Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
The inositol hexakisphosphate kinase family. Catalytic flexibility and function in yeast vacuole biogenesis.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Saiardi A, Caffrey JJ, Snyder SH, Shears SB
  • Publication date:
  • Pagination:
    24686, 24692
  • Journal:
    J Biol Chem
  • Volume:
  • Issue:
  • Status:
  • Country:
    United States
  • Print ISSN:
  • PII:
  • Language:
  • Keywords:
    Animals, Catalysis, Fungal Proteins, Humans, Kinetics, Mammals, Phosphotransferases (Phosphate Group Acceptor), Recombinant Proteins, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Substrate Specificity, Vacuoles
Saiardi et al. (Saiardi, A., Erdjument-Bromage, H., Snowman, A., Tempst, P., and Snyder, S. H. (1999) Curr. Biol. 9, 1323-1326) previously described the cloning of a kinase from yeast and two kinases from mammals (types 1 and 2), which phosphorylate inositol hexakisphosphate (InsP(6)) to diphosphoinositol pentakisphosphate, a "high energy" candidate regulator of cellular trafficking. We have now studied the significance of InsP(6) kinase activity in Saccharomyces cerevisiae by disrupting the kinase gene. These ip6kDelta cells grew more slowly, their levels of diphosphoinositol polyphosphates were 60-80% lower than wild-type cells, and the cells contained abnormally small and fragmented vacuoles. Novel activities of the mammalian and yeast InsP(6) kinases were identified; inositol pentakisphosphate (InsP(5)) was phosphorylated to diphosphoinositol tetrakisphosphate (PP-InsP(4)), which was further metabolized to a novel compound, tentatively identified as bis-diphosphoinositol trisphosphate. The latter is a new substrate for human diphosphoinositol polyphosphate phosphohydrolase. Kinetic parameters for the mammalian type 1 kinase indicate that InsP(5) (K(m) = 1.2 micrometer) and InsP(6) (K(m) = 6.7 micrometer) compete for phosphorylation in vivo. This is the first time a PP-InsP(4) synthase has been identified. The mammalian type 2 kinase and the yeast kinase are more specialized for the phosphorylation of InsP(6). Synthesis of the diphosphorylated inositol phosphates is thus revealed to be more complex and interdependent than previously envisaged.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
MRC/UCL Lab for Molecular Cell Bio
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by