Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Glycogenin is the priming glucosyltransferase required for the initiation of glycogen biogenesis in rabbit skeletal muscle.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Pitcher J, Smythe C, Cohen P
  • Publication date:
  • Pagination:
    391, 395
  • Journal:
    Eur J Biochem
  • Volume:
  • Issue:
  • Status:
  • Country:
  • Print ISSN:
  • Language:
  • Keywords:
    Animals, Chromatography, Gel, Electrophoresis, Polyacrylamide Gel, Glucosyltransferases, Glycogen, Glycogen Synthase, Glycoproteins, Muscles, Rabbits
Purified preparations of glycogen synthase are a complex of two proteins, the catalytic subunit of glycogen synthase and glycogenin, present in a 1:1 molar ratio [J. Pitcher, C. Smythe, D. G. Campbell & P. Cohen (1987) Eur. J. Biochem. 169, 497-502]. This complex has now been found to contain a further glucosyltransferase activity that catalyses the transfer of glucose residues from UDP-Glc to glucosylated-glycogenin. The glucosyltransferase, which is of critical importance in forming the primer required for de novo glycogen biosynthesis, is distinct from glycogen synthase in several ways. It has an absolute requirement for divalent cations, a 1000-fold lower Km for UDP-Glc and its activity is unaffected by incubation with UDP-pyridoxal or exposure to 2 M LiBr, which inactivate glycogen synthase by 95% and 100%, respectively. The priming glucosyltransferase and glycogen synthase activities coelute on Superose 6, and the rate of glycosylation of glycogenin is independent of enzyme concentration, suggesting that the reaction is catalysed intramolecularly by a subunit of the glycogen synthase complex. This component has been identified as glycogenin, following dissociation of the subunits in 2 M LiBr and their separation on Superose 12. The glycosylation of isolated glycogenin reaches a plateau when five additional glucose residues have been added to the protein, and digestion with alpha-amylase indicates that all the glycogenin molecules contain at least one glucosyl residue prior to autoglucosylation. The priming glucosyltransferase activity of glycogenin is unaffected by either glucose 6-phosphate or by phosphorylation of the catalytic subunit of glycogen synthase. The mechanism of primer formation is discussed in the light of the finding that glycogenin is an enzyme that catalyses its own autoglucosylation.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
MRC/UCL Lab for Molecular Cell Bio
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by