Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Using a maximum uncertainty LDA-based approach to classify and analyse MR brain images
  • Publication Type:
  • Authors:
    Thomaz CE, Boardman JP, Hill DLG, Hajnal JV, Edwards DD, Rutherford MA, Gillies DF, Rueckert D
  • Publication date:
  • Pagination:
    291, 300
  • Published proceedings:
    Lecture Notes in Computer Science
  • Volume:
  • Issue:
    PART 1
  • Status:
  • Print ISSN:
Multivariate statistical learning techniques that analyse all voxels simultaneously have been used to classify and describe MR brain images. Most of these techniques have overcome the difficulty of dealing with the inherent high dimensionality of 3D brain image data by using pre-processed segmented images or a number of specific features. However, an intuitive way of mapping the classification results back into the original image domain for further interpretation remains challenging. In this paper, we introduce the idea of using Principal Components Analysis (PCA) plus the maximum uncertainty Linear Discriminant Analysis (LDA) based approach to classify and analyse magnetic resonance (MR) images of the brain. It avoids the computation costs inherent in commonly used optimisation processes, resulting in a simple and efficient implementation for the maximisation and interpretation of the Fisher's classification results. In order to demonstrate the effectiveness of the approach, we have used two MR brain data sets. The first contains images of 17 schizophrenic patients and 5 controls, and the second is composed of brain images of 12 preterm infants at term equivalent age and 12 term controls. The results indicate that the two-stage linear classifier not only makes clear the statistical differences between the control and patient samples, but also provides a simple method of analysing the results for further medical research. © Springer-Verlag Berlin Heidelberg 2004.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Med Phys & Biomedical Eng
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by