Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Structured sparsity models for brain decoding from fMRI data
  • Publication Type:
  • Authors:
    Baldassarre L, Mourão-Miranda J, Pontil M
  • Publication date:
  • Pagination:
    5, 8
  • Published proceedings:
    Proceedings - 2012 2nd International Workshop on Pattern Recognition in NeuroImaging, PRNI 2012
  • ISBN-13:
  • Status:
Structured sparsity methods have been recently proposed that allow to incorporate additional spatial and temporal information for estimating models for decoding mental states from fMRI data. These methods carry the promise of being more interpretable than simpler Lasso or Elastic Net methods. However, despite sparsity has often been advocated as leading to more interpretable models, we show that by itself sparsity and also structured sparsity could lead to unstable models. We present an extension of the Total Variation method and assess several other structured sparsity models on accuracy, sparsity and stability. Our results indicate that structured sparsity via the Sparse Total Variation can mitigate some of the instability inherent in simpler sparse methods, but more research is required to build methods that can reliably infer relevant activation patterns from fMRI data. © 2012 IEEE.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Computer Science
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by