Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Multi-level visual adaptation: Dissociating curvature and facial-expression aftereffects produced by the same adapting stimuli
Adaptation aftereffects offer a critical window onto sensory processing in the brain. However, such sensory processing is hierarchical, progressing from the extraction of simple features to the representation of complex patterns. The way that adaptation depends on coordinated changes across different levels of the hierarchy has been studied. However, when a given adapting stimulus produces both a low- and a high-level aftereffect, it remains unclear whether the high-level aftereffect is a passive reflection of low-level adaptation, or whether it is generated, at least partially, de novo in high-level areas. We assembled the two key ingredients needed for investigating this question psychophysically. One ingredient involves perceptual tasks that depend rather exclusively on low or high levels of processing, and yet involve partially identical stimuli that inspire cross-level adaptation. For this, we considered the discrimination of curvature or facial expression using curves or cartoon faces. The other ingredient is spatial or temporal stimulus manipulations that limit adaptation to either low or high levels. For this, we used crowding and brief presentations. We found that crowding an adapting curve with flanking curves reduces the curvature aftereffect much more than the facial-expression aftereffect, and vice versa for crowding the adapting face with flanking faces. Additionally, reducing adaptation time to a cartoon face diminishes the curvature aftereffect more drastically than the facial-expression aftereffect. These results suggest that high-level aftereffects, even when generated by a low-level adaptor, are not completely inherited from lower levels, and offer a window into the determining factors. © 2012 Elsevier Ltd.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
There are no UCL People associated with this publication
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by