Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data shown on the profile page to:

Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Next generation brain implant coatings and nerve regeneration via novel conductive nanocomposite development.
  • Publication Type:
    Journal article
  • Authors:
    Antoniadou EV, Ahmad RK, Jackman RB, Seifalian AM
  • Publication date:
  • Pagination:
    3253, 3257
  • Journal:
    Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference
  • Volume:
  • Print ISSN:
Composite materials based on the coupling of conductive organic polymers and carbon nanotubes have shown that they possess properties of the individual components with a synergistic effect. Multi-wall carbon nanotube (MWCNT)/ polymer composites are hybrid materials that combine numerous mechanical, electrical and chemical properties and thus, constitute ideal biomaterials for a wide range of regenerative medicine applications. Although, complete dispersion of CNT in a polymer matrix has rarely been achieved, in this study we have succeeded high dispersibility of CNT in POSS-PCU and POSS-PCL, novel polymers based on polyprolactone and polycarbonate polyurethane (PCU) and poly(caprolactoneurea)urethane both having incorporated polyhedral oligomeric silsesquioxane (POSS). We report the synthesis and characterization of a novel biomaterial that possesses unique properties of being electrically conducting and thus being capable of electronic interfacing with tissue. To this end, POSS-PCU/MWCNT composite can be used as a biomaterial for the development of nerve guidance channels to promote nerve regeneration and POSS-PCL/MWCNT as a substrate to increase electronic interfacing between neurons and micro-machined electrodes for potential applications in neural probes, prosthetic devices and brain implants.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Authors
Dept of Electronic & Electrical Eng
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by