UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Visual area V5/MT remembers "what" but not "where"
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    Campana G, Cowey A, Walsh V
  • Publication date:
    12/2006
  • Pagination:
    1766, 1770
  • Journal:
    Cerebral Cortex
  • Volume:
    16
  • Issue:
    12
  • Print ISSN:
    1047-3211
  • Keywords:
    TMS, V5, Priming
  • Notes:
    Imported via OAI, 7:29:01 22nd Mar 2007
Abstract
Priming for motion direction has been shown to depend upon the functional integrity of extrastriate area V5/MT. Its retinotopic organization and the interactions recently found between motion adaptation and misperceived localization may suggest, for this area, a role for priming of spatial position in addition to the established priming of motion direction. Disruption of V5/MT with repetitive transcranial magnetic stimulation during the intertrial interval had the effect of abolishing priming of motion direction but no effect in priming of spatial position. These effects cannot be explained in terms of perception or task demands but only in terms of the effects of information irrelevant to the correct performance of the task stored over the intertrial interval. We suggest that the attribute of spatial position might be stored in short-term memory either in earlier areas of the motion pathways such as V3 or in higher cortical areas traditionally associated with the analysis of spatial information, for example, posterior parietal cortex or the frontal eye fields. Priming for motion direction has been shown to depend upon the functional integrity of extrastriate area V5/MT. Its retinotopic organization and the interactions recently found between motion adaptation and misperceived localization may suggest, for this area, a role for priming of spatial position in addition to the established priming of motion direction. Disruption of V5/MT with repetitive transcranial magnetic stimulation during the intertrial interval had the effect of abolishing priming of motion direction but no effect in priming of spatial position. These effects cannot be explained in terms of perception or task demands but only in terms of the effects of information irrelevant to the correct performance of the task stored over the intertrial interval. We suggest that the attribute of spatial position might be stored in short-term memory either in earlier areas of the motion pathways such as V3 or in higher cortical areas traditionally associated with the analysis of spatial information, for example, posterior parietal cortex or the frontal eye fields.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Institute of Cognitive Neuroscience
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by