Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Avoiding the crowds: Understanding Tube station congestion patterns from trip data
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Conference Proceeding
  • Authors:
    Ceapa I, Smith C, Capra L
  • Publication date:
  • Pagination:
    134, 141
  • Journal:
    Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
  • Status:
For people travelling using public transport, overcrowding is one of the major causes of discomfort. However, most Advanced Traveller Information Systems (ATIS) do not take crowdedness into account, suggesting routes either based on number of interchanges or overall travel time, regardless of how comfortable (in terms of crowdedness) the trip might be. Identifying times when public transport is overcrowded could help travellers change their travel patterns, by either travelling slightly earlier or later, or by travelling from/to a different but geographically close station. In this paper, we illustrate how historical automated fare collection systems data can be mined in order to reveal station crowding patterns. In particular, we study one such dataset of travel history on the London underground (known colloquially as the "Tube"). Our spatio-temporal analysis demonstrates that crowdedness is a highly regular phenomenon during the working week, with large spikes occurring in short time intervals. We then illustrate how crowding levels can be accurately predicted, even with simple techniques based on historic averages. These results demonstrate that information regarding crowding levels can be incorporated within ATIS, so as to provide travellers with more personalised travel plans. © 2012 ACM.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by