UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data shown on the profile page to:

http://www.ucl.ac.uk/finance/secure/research/post_award
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Poly(methyl methacrylate) coating of soft magnetic amorphous and crystalline Fe,Co-B nanoparticles by chemical reduction.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Fernández Barquín L, Yedra Martínez A, Rodríguez Fernández L, Rojas DP, Murphy FJ, Alba Venero D, Ruiz González L, González-Calbet J, Fdez-Gubieda ML, Pankhurst QA
  • Publication date:
    03/2012
  • Pagination:
    1843, 1851
  • Journal:
    J Nanosci Nanotechnol
  • Volume:
    12
  • Issue:
    3
  • Country:
    United States
  • Print ISSN:
    1533-4880
  • Language:
    eng
Abstract
The structural and magnetic properties of a collection of nanoparticles coated by Poly(methyl methacrylate) through a wet chemical synthesis have been investigated. The particles display either an amorphous (M = Fe, Co) M-B arrangement or a mixed structure bcc-Fe and fcc-Co + amorphous M-B. Both show the presence of a metal oxi-hydroxide formed in aqueous reduction. The organic coating facilitates technological handling. The cost-effective synthesis involves a reduction in a Poly(methyl methacrylate) aqueous solution of iron(II) or cobalt(II) sulphates (< 0.5 M) by sodium borohydride (< 0.5 M). The particles present an oxidized component, as deduced from X-ray diffraction, Mössbauer and Fe- and Co K-edge X-ray absorption spectroscopy and electron microscopy. For the ferrous alloys, this Fe-oxide is alpha-goethite, favoured by the aqueous solution. The Poly(methyl methacrylate) coating is confirmed by Fourier transform infrared spectroscopy. In pure amorphous core alloys there is a drastic change of the coercivity from bulk to around 30 Oe in the nanoparticles. The mixed structured alloys also lie in the soft magnetic regime. Magnetisation values at room temperature range around 100 emu/g. The coercivity stems from multidomain particles and their agglomeration, triggering the dipolar interactions.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Authors
Institute of Biomedical Engineering
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by