UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Physiological evidence consistent with reduced neuroplasticity in human adolescents born preterm.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Pitcher JB, Riley AM, Doeltgen SH, Kurylowicz L, Rothwell JC, McAllister SM, Smith AE, Clow A, Kennaway DJ, Ridding MC
  • Publication date:
    14/11/2012
  • Pagination:
    16410, 16416
  • Journal:
    J Neurosci
  • Volume:
    32
  • Issue:
    46
  • Status:
    Published
  • Country:
    United States
  • PII:
    32/46/16410
  • Language:
    eng
  • Keywords:
    Adolescent, Birth Weight, Brain, Cognition, Data Interpretation, Statistical, Electromyography, Evoked Potentials, Motor, Female, Gestational Age, Humans, Hydrocortisone, Infant, Newborn, Infant, Premature, Motor Cortex, Neuronal Plasticity, Pregnancy, Saliva, Transcranial Magnetic Stimulation
Abstract
Preterm-born children commonly experience motor, cognitive, and learning difficulties that may be accompanied by altered brain microstructure, connectivity, and neurochemistry. However, the mechanisms linking the altered neurophysiology with the behavioral outcomes are unknown. Here we provide the first physiological evidence that human adolescents born preterm at or before 37 weeks of completed gestation have a significantly reduced capacity for cortical neuroplasticity, the key overall mechanism underlying learning and memory. We examined motor cortex neuroplasticity in three groups of adolescents who were born after gestations of ≤32 completed weeks (early preterm), 33-37 weeks (late preterm), and 38-41 weeks (term) using a noninvasive transcranial magnetic brain stimulation technique to induce long-term depression (LTD)-like neuroplasticity. Compared with term-born adolescents, both early and late preterm adolescents had reduced LTD-like neuroplasticity in response to brain stimulation that was also associated with low salivary cortisol levels. We also compared neuroplasticity in term-born adolescents with that in term-born young adults, finding that the motor cortex retains a relatively enhanced neuroplastic capacity in adolescence. These findings provide a possible mechanistic link between the altered brain physiology of preterm birth and the subsequent associated behavioral deficits, particularly in learning and memory. They also suggest that altered hypothalamic-pituitary-adrenal axis function due to preterm birth may be a significant modulator of this altered neuroplasticity. This latter finding may offer options in the development of possible therapeutic interventions.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Clinical and Movement Neurosciences
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by