Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Bridging memory-based collaborative filtering and text retrieval
When speaking of information retrieval, we often mean text retrieval. But there exist many other forms of information retrieval applications. A typical example is collaborative filtering that suggests interesting items to a user by taking into account other users' preferences or tastes. Due to the uniqueness of the problem, it has been modeled and studied differently in the past, mainly drawing from the preference prediction and machine learning view point. A few attempts have yet been made to bring back collaborative filtering to information (text) retrieval modeling and subsequently new interesting collaborative filtering techniques have been thus derived. In this paper, we show that from the algorithmic view point, there is an even closer relationship between collaborative filtering and text retrieval. Specifically, major collaborative filtering algorithms, such as the memory-based, essentially calculate the dot product between the user vector (as the query vector in text retrieval) and the item rating vector (as the document vector in text retrieval). Thus, if we properly structure user preference data and employ the target user's ratings as query input, major text retrieval algorithms and systems can be directly used without any modification. In this regard, we propose a unified formulation under a common notational framework for memory-based collaborative filtering, and a technique to use any text retrieval weighting function with collaborative filtering preference data. Besides confirming the rationale of the framework, our preliminary experimental results have also demonstrated the effectiveness of the approach in using text retrieval models and systems to perform item ranking tasks in collaborative filtering. © 2012 Springer Science+Business Media New York.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by