Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Opposite effects of weak transcranial direct current stimulation on different phases of short interval intracortical inhibition (SICI).
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Cengiz B, Murase N, Rothwell JC
  • Publication date:
  • Pagination:
    321, 331
  • Journal:
    Exp Brain Res
  • Volume:
  • Issue:
  • Status:
  • Country:
  • Language:
  • Keywords:
    Adult, Biophysics, Computer-Aided Design, Electromyography, Evoked Potentials, Motor, Factor Analysis, Statistical, Female, Humans, Male, Motor Cortex, Neural Inhibition, Time Factors, Transcranial Magnetic Stimulation
Short interval intracortical inhibition (SICI) is a common paired-pulse TMS technique that is used to measure GABAa-ergic inhibition in the cerebral motor cortex. However, inhibition evaluated with an interstimulus interval (ISI) between the TMS pulses of 2.5 ms has quite different properties from that seen at 1 ms. It is thought that the latter may represent either (or both) a different type of synaptic inhibition or refractoriness of neural membranes. The present experiments provide further evidence about the early and late components of SICI using transcranial direct current stimulation (tDCS), a technique thought to change neural excitability by polarising the nerve membranes. We assessed SICI using a threshold tracking method at a range of ISIs during concurrent application of tDCS in 11 healthy volunteers (8 males, 27-43 years old). Each subject underwent both anodal and cathodal tDCS with two different intensities of stimulation (1 and 2 mA). Because there was no significant difference between the results at the two intensities, the data were combined. Principal component analysis was used to separate the contributions of early and late SICI to the time course of inhibition from 1 to 5 ms tDCS had opposite effects on early and late SICI. Anodal tDCS reduced late SICI but enhanced early SICI, whereas cathodal tDCS had the opposite effect. This is further evidence that the two phases of SICI are produced by different mechanisms, perhaps involving different sets of neurones or different locations on the same neurone that respond oppositely to tDCS.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Clinical and Movement Neurosciences
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by