Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
The mechanical environment in dupuytren's contracture determines cell contractility and associated MMP-mediated matrix remodeling
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Verhoekx JSN, Beckett KS, Bisson MA, McGrouther DA, Grobbelaar AO, Mudera V
  • Publication date:
  • Pagination:
    328, 334
  • Journal:
    Journal of Orthopaedic Research
  • Volume:
  • Issue:
  • Status:
  • Print ISSN:
Matrix metalloproteinases (MMPs) are expressed in Dupuytren's contracture and play a role in matrix remodeling. We tested the role of tension on contractility and MMP expression in Dupuytren's nodule and cord cells. Cells were subjected to pre-determined loading patterns of known repeatable magnitudes (static load, unloading, and overloading) and tested for MMP gene expression (MMP-1, -2, -9, -13, and TIMP-1, -2) and force generation using a tension-culture force monitor. Matrix remodeling was assessed by addition of cytochalasin D and residual matrix tension was quantified. Nodule compared to cord and control cells demonstrate greater force generation and remodeling (p < 0.05). Nodule cells subjected to a reduced load and overloading led to threefold increase of MMP-1, -2, and -9 compared to static load, whilst cord and control cells only showed a twofold increase of MMP-9. Nodule cells subjected to overloading showed a twofold increase in TIMP-2 expression, whilst cord and control cells showed a twofold increase in TIMP-1 expression. Nodule cells differ from cord cells by increased force generation in response to changes in the mechanical environment and related MMP/TIMP-mediated matrix remodeling. In turn this may lead to permanent matrix shortening and digital contracture. Interventional therapies should be aimed at nodule cells to prevent contraction and subsequent permanent matrix remodeling. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 31: 328-334, 2013 Copyright © 2012 Orthopaedic Research Society.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Div of Surgery & Interventional Sci
Div of Surgery & Interventional Sci
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by