Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
The effect of particle size on the osteointegration of injectable silicate-substituted calcium phosphate bone substitute materials.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Coathup MJ, Cai Q, Campion C, Buckland T, Blunn GW
  • Publication date:
  • Pagination:
    902, 910
  • Journal:
    J Biomed Mater Res B Appl Biomater
  • Volume:
  • Issue:
  • Status:
  • Country:
    United States
  • Language:
  • Keywords:
    animal model, bone regeneration, particle size, silicate-substituted calcium phosphate, Animals, Bone Regeneration, Bone Substitutes, Calcium Phosphates, Female, Femur, Injections, Materials Testing, Microscopy, Electron, Scanning, Models, Animal, Osseointegration, Particle Size, Poloxamer, Sheep, Domestic, Silicates, Tissue Scaffolds
Calcium phosphate (CaP) particles as a carrier in an injectable bone filler allows less invasive treatment of bony defects. The effect of changing granule size within a poloxamer filler on the osteointegration of silicate-substituted calcium phosphate (SiCaP) bone substitute materials was investigated in an ovine critical-sized femoral condyle defect model. Treatment group (TG) 1 consisted of SiCaP granules sized 1000-2000 μm in diameter (100 vol %). TG2 investigated a granule size of 250-500 μm (75 vol %), TG3 a granule size of 90-125 μm (75 vol %) and TG4 a granule size of 90-125 μm (50 vol %). Following a 4 and 8 week in vivo period, bone area, bone-implant contact, and remaining implant area were quantified within each defect. At 4 weeks, significantly increased bone formation was measured in TG2 (13.32% ± 1.38%) when compared with all other groups (p = 0.021 in all cases). Bone in contact with the bone substitute surface was also significantly higher in TG2. At 8 weeks most new bone was associated within defects containing the smallest granule size investigated (at the lower volume) (TG4) (42.78 ± 3.36%) however this group was also associated with higher amounts of fragmented SiCaP. These smaller particles were phagocytosed by macrophages and did not appear to have a negative influence on healing. In conclusion, SiCaP granules of 250-500 μm in size may be a more suitable scaffold when used as an injectable bone filler and may be a convenient method for treating bony defects.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Department of Materials & Tissue
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by