Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Interactive Exploratory Search for Multi Page Search Results
  • Publication Type:
  • Authors:
    Jin X, Sloan M, Wang J
  • Publisher:
  • Publication date:
  • Published proceedings:
    Proceedings of the 22rd Annual Conference on World Wide Web (WWW'13)
  • ISBN-13:
  • Conference start date:
  • Conference finish date:
  • Keywords:
    Interactive ranking and retrieval, Exploratory search, Diversity
Modern information retrieval interfaces typically involve multiple pages of search results, and users who are recall minded or engaging in exploratory search using ad hoc queries are likely to access more than one page. Document rankings for such queries can be improved by allowing additional context to the query to be provided by the user herself using explicit ratings or implicit actions such as clickthroughs. Existing methods using this information usually involved detrimental UI changes that can lower user satisfaction. Instead, we propose a new feedback scheme that makes use of existing UIs and does not alter user's browsing behaviour; to maximise retrieval performance over multiple result pages, we propose a novel retrieval optimisation framework and show that the optimal ranking policy should choose a diverse, exploratory ranking to display on the first page. Then, a personalised re-ranking of the next pages can be generated based on the user's feedback from the first page. We show that document correlations used in result diversifi cation have a signi ficant impact on relevance feedback and its effectiveness over a search session. TREC evaluations demonstrate that our optimal rank strategy (including approximative Monte Carlo Sampling) can naturally optimise the trade-off between exploration and exploitation and maximise the overall user's satisfaction over time against a number of similar baselines.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by