Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Magnetic resonance imaging evaluation of remodeling by cardiac elastomeric tissue scaffold biomaterials in a rat model of myocardial infarction
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Stuckey DJ, Ishii H, Chen QZ, Boccaccini AR, Hansen U, Carr CA, Roether JA, Jawad H, Tyler DJ, Ali NN, Clarke K, Harding SE
  • Publication date:
  • Pagination:
    3395, 3402
  • Journal:
    Tissue Engineering - Part A
  • Volume:
  • Issue:
  • Status:
  • Print ISSN:
Grafting of elastomeric biomaterial scaffolds may offer a radical strategy for the prevention of heart failure after myocardial infarction by increasing efficacy of stem cell delivery as well as acting as mechanical restraint devices to constrain scar expansion. Biomaterials can be partially optimized in vitro, but their in vivo performance is most critical and should ideally be monitored serially and noninvasively. We used magnetic resonance imaging (MRI) to assess three scaffold materials with a range of structural moduli equal to or greater than myocardial tissue: poly(glycerol sebacate) (PGS), poly(ethyleneterephathalate)/dimer fatty acid (PED), and TiO2- reinforced PED (PED-TiO2). Patches, 1cm in diameter, were grafted onto the hearts of infarcted rats, with biomaterial-free infarcted rat hearts used as controls. MRI was able to determine scaffold size and location on the heart and identified unexpectedly rapid in vivo degradation of the PGS compared with previous in vitro testing. PED patches did not withstand in vivo attachment, but the more rigid PED-TiO2 material was detrimental to heart function, increasing chamber and scar sizes and reducing ejection fractions compared with controls. In contrast, the mechanically compatible PGS scaffold successfully reduced hypertrophy, giving it potential for limiting excessive postinfarct remodeling. PGS was unable to support systolic function, but it would be suitable for strategies to deliver cardiac stem/progenitor cells, to limit remodeling during the period of functional cellular integration, and to degrade after cell assimilation by the heart. This work has also shown for the first time the value of using MRI as a noninvasive tool for evaluating and optimizing therapeutic biomaterials in vivo. © 2010 Mary Ann Liebert, Inc.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Department of Imaging
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by