Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
The high-pressure phase diagram of synthetic epsomite (MgSO4·7H2O and MgSO4·7D2O) from ultrasonic and neutron powder diffraction measurements
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Gromnitskaya EL, Yagafarov OF, Lyapin AG, Brazhkin VV, Wood IG, Tucker MG, Fortes AD
  • Publication date:
  • Pagination:
    271, 285
  • Journal:
    Physics and Chemistry of Minerals
  • Volume:
  • Issue:
  • Status:
  • Print ISSN:
We present an ultrasonic and neutron powder diffraction study of crystalline MgSO4·7H2O (synthetic epsomite) and MgSO4·7D2O under pressure up to ~3 GPa near room temperature and up to ~2 GPa at lower temperatures. Both methods provide complementary data on the phase transitions and elasticity of magnesium sulphate heptahydrate, where protonated and deuterated counterparts exhibit very similar behaviour and properties. Under compression in the declared pressure intervals, we observed three different sequences of phase transitions: between 280 and 295 K, phase transitions occurred at approximately 1. 4, 1. 6, and 2. 5 GPa; between 240 and 280 K, only a single phase transition occurred; below 240 K, there were no phase transformations. Overall, we have identified four new phase fields at high pressure, in addition to that of the room-pressure orthorhombic structure. Of these, we present neutron powder diffraction data obtained in situ in the three phase fields observed near room temperature. We present evidence that these high-pressure phase fields correspond to regions where MgSO4·7H2O decomposes to a lower hydrate by exsolving water. Upon cooling to liquid nitrogen temperatures, the ratio of shear modulus G to bulk modulus B increases and we observe elastic softening of both moduli with pressure, which may be a precursor to pressure-induced amorphization. These observations may have important consequences for modelling the interiors of icy planetary bodies in which hydrated sulphates are important rock-forming minerals, such as the large icy moons of Jupiter, influencing their internal structure, dynamics, and potential for supporting life. © 2013 Springer-Verlag Berlin Heidelberg.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Earth Sciences
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by