Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Cell up-take control of gold nanoparticles functionalized with a thermoresponsive polymer
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Salmaso S, Caliceti P, Amendola V, Meneghetti M, Magnusson JP, Pasparakis G, Alexander C
  • Publication date:
  • Pagination:
    1608, 1615
  • Journal:
    Journal of Materials Chemistry
  • Volume:
  • Issue:
  • Status:
  • Print ISSN:
Surface decoration of gold nanoparticles with thermoresponsive polymers endows a temperature tunable colloidal system switchable for enhanced intracellular up-take. Gold nanoparticles (AuNP, 18 ± 11 nm-diameter) produced by laser ablation synthesis in liquid solution were surface coated with thermoresponsive thiol terminated poly-N-isopropylacrylamide-co-acrylamide co-polymer possessing a lower critical solution temperature (LCST) at 37 °C. Under selected conditions about 3800 polymer chains were conjugated per particle. The polymer coated nanoparticles were found to display thermosensitive properties, as in solution they exhibited reversible aggregation/deaggregation above and below the LCST, respectively. Cell culture studies showed that the polymer decorated AuNP were located into human breast adenocarcinoma MCF7 cells treated at 40 °C (12000 AuNP/cell) with more than 80-fold greater up-take compared to cells treated at 34 °C with the same particles (140 AuN/cell). This difference is attributable to a 'switching' of the polymer coating to a globule state at 37 °C and an increased hydrophobicity of the particles with a simultaneous loss of the 'stealth' properties of the polymer coating. By contrast, cell up-take of uncoated AuNP (about 6000 AuNP/cell) did not depend on the incubation temperature. These data show that good control of the AuNP cell up-take can be obtained with the new polymer-gold nanoconjugates, and suggest that these systems might find use for targeting cells in vitro by a small temperature change or in vivo in body sites, such as inflamed or tumour tissues, where a temperature variation is already present. © 2009 The Royal Society of Chemistry.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
There are no UCL People associated with this publication
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by