UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Cerebellar transcranial direct current stimulation does not alter motor surround inhibition.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Sadnicka A, Kassavetis P, Saifee TA, Pare├ęs I, Rothwell JC, Edwards MJ
  • Publication date:
    06/2013
  • Pagination:
    425, 432
  • Journal:
    Int J Neurosci
  • Volume:
    123
  • Issue:
    6
  • Status:
    Published
  • Country:
    England
  • Language:
    eng
  • Keywords:
    Adult, Cerebellum, Cross-Over Studies, Electric Stimulation, Evoked Potentials, Motor, Female, Fingers, Humans, Male, Neural Inhibition, Pyramidal Tracts, Transcranial Magnetic Stimulation
Abstract
Motor surround inhibition (mSI) is one mechanism by which the central nervous system individuates finger movements, and yet the neuroanatomical substrate of this phenomenon is currently unknown. In this study, we examined the role of the cerebellum in the generation of mSI, using transcranial direct current stimulation of the cerebellum (cDC). We also examined intrasubject and intersubject variability of mSI. Twelve subjects completed a three session cross over study in which mSI was measured before and after (0 and 20 minutes) sham, anodal and cathodal cDC. mSI of the surround muscle (adductor digiti minimi) at the onset of flexion of the index finger was consistently observed. Anodal and cathodal cDC did not modulate the magnitude of mSI. For individual subjects (across the three sessions), the intrasubject coefficient of variation was 27%. Between subjects, the intersubject coefficient of variation was 47%. mSI was a stable effect in individual subjects across multiple sessions. This is an important observation and contrasts with other neurophysiological paradigms such as paired associative stimulation response, which exhibit great variability. In addition, we have quantified intrasubject variability of mSI, which will allow future therapeutic studies that attempt to modulate mSI to be adequately powered. We have not found evidence that the cerebellum contributes to the neuroanatomical network needed for the generation of mSI. Understanding the mechanisms of mSI remains a challenge but is important for disorders in which it is deficient such as Parkinson's disease and focal hand dystonia.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Clinical and Movement Neurosciences
Author
Clinical and Movement Neurosciences
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by