UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Chapter 26. Tickling the brain: studies of visual sensation, perception and cognition by transcranial magnetic stimulation
  • Publication Type:
    Chapter
  • Authors:
    Cowey A, Walsh V
  • Publisher:
    Elsevier
  • Publication date:
    2001
  • Place of publication:
    London, UK
  • Pagination:
    pp.411, 425
  • Series:
    Progress in Brain Research
  • Edition:
    134
  • Editors:
    Casanova C,Ptito M
  • ISBN-13:
    9780444505866
  • Book title:
    Progress in Brain Research
  • Notes:
    Imported via OAI, 7:29:00 22nd Aug 2007
Abstract
Transcranial magnetic stimulation (TMS) is a means of stimulating the brain from outside the skull with little, and occasionally no discomfort for the subject. A single TMS pulse, lasting less than 1 ms, can briefly disrupt the normal activity of a targeted region of the brain for tens of milliseconds, allowing the effects of disruption on specific perceptual and cognitive tasks to be measured behaviorally. Rapid, repeated pulses can disrupt activity for correspondingly longer periods. The reversibility of the effects make it possible to create ‘virtual patients’ who can be tested in the same way as actual patients with real brain damage in order to explore regional functional specialization. Although several aspects of TMS continue to be evaluated, such as its safety, the extent and localization of the effective region of induced electrical current, the importance of the waveform of the pulse, the configuration and positioning of the coil, its productivity has been firmly established in little more than 10 years of systematic use. Examples of the latter are given from investigations of the nature of visual phosphenes produced by TMS applied to different regions of the visual cortex in normal subjects and subjects with occipital or ocular damage in an attempt to reveal the role of visual cortex in visual awareness.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Institute of Cognitive Neuroscience
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by