UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data shown on the profile page to:

http://www.ucl.ac.uk/finance/secure/research/post_award
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Simulation of ultrasonic NCF composites testing using 3D finite element model
Abstract
Composite materials offer many advantages for aerospace applications, e.g., good strength to weight ratio. Different types of composites, such as non-crimp fabrics (NCF), are currently being investigated as they offer reduced manufacturing costs and improved damage tolerance as compared to traditional pre-impregnated composite materials. NCF composites are made from stitched fiber bundles (tows), which typically have a width and thickness in the order of millimeter. This results in strongly inhomogeneous and anisotropic material properties. Different types of manufacturing imperfections, such as porosity, resin pockets, tow crimp and misalignment can lead to reduced material strength and thus to defects following excessive loads or impact, e.g. fracture and delaminations. The ultrasonic non-destructive testing of NCF composites is difficult, as the tow size is comparable to the wavelength, leading to multiple scattering in this inherently three-dimensional structure. For typical material properties and geometry of an NCF composite, a full three-dimensional Finite Element (FE) model has been developed in ABAQUS. The propagation of longitudinal ultrasonic waves has been simulated and the effect of multiple scattering at the fiber tows investigated. The effect of porosity as a typical manufacturing imperfection has been considered. The potential for the detection and quantification of such defects is discussed based on the observed influence on the ultrasonic wave propagation and attenuation. © 2012 SPIE.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Authors
Dept of Mechanical Engineering
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by