UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Structural integrity of the substantia nigra and subthalamic nucleus predicts flexibility of instrumental learning in older-age individuals
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Chowdhury R, Guitart-Masip M, Lambert C, Dolan RJ, Düzel E
  • Publication date:
    01/10/2013
  • Pagination:
    2261, 2270
  • Journal:
    Neurobiology of Aging
  • Volume:
    34
  • Issue:
    10
  • Status:
    Published
  • Print ISSN:
    0197-4580
Abstract
Flexible instrumental learning is required to harness the appropriate behaviors to obtain rewards and to avoid punishments. The precise contribution of dopaminergic midbrain regions (substantia nigra/ventral tegmental area [SN/VTA]) to this form of behavioral adaptation remains unclear. Normal aging is associated with a variable loss of dopamine neurons in the SN/VTA. We therefore tested the relationship between flexible instrumental learning and midbrain structural integrity. We compared task performance on a probabilistic monetary go/no-go task, involving trial and error learning of: "go to win," "no-go to win," "go to avoid losing," and "no-go to avoid losing" in 42 healthy older adults to previous behavioral data from 47 younger adults. Quantitative structural magnetization transfer images were obtained to index regional structural integrity. On average, both some younger and some older participants demonstrated a behavioral asymmetry whereby they were better at learning to act for reward ("go to win" > "no-go to win"), but better at learning not to act to avoid punishment ("no-go to avoid losing" > "go to avoid losing"). Older, but not younger, participants with greater structural integrity of the SN/VTA and the adjacent subthalamic nucleus could overcome this asymmetry. We show that interindividual variability among healthy older adults of the structural integrity within the SN/VTA and subthalamic nucleus relates to effective acquisition of competing instrumental responses. © 2013 Elsevier Inc.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Institute of Cognitive Neuroscience
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by