UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data shown on the profile page to:

http://www.ucl.ac.uk/finance/secure/research/post_award
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Self-assembled DNA nanopores that span lipid bilayers.
Abstract
DNA nanotechnology excels at rationally designing bottom-up structures that can functionally replicate naturally occurring proteins. Here we describe the design and generation of a stable DNA-based nanopore that structurally mimics the amphiphilic nature of protein pores and inserts into bilayers to support a steady transmembrane flow of ions. The pore carries an outer hydrophobic belt comprised of small chemical alkyl groups which mask the negatively charged oligonucleotide backbone. This modification overcomes the otherwise inherent energetic mismatch to the hydrophobic environment of the membrane. By merging the fields of nanopores and DNA nanotechnology, we expect that the small membrane-spanning DNA pore will help open up the design of entirely new molecular devices for a broad range of applications including sensing, electric circuits, catalysis, and research into nanofluidics and controlled transmembrane transport.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Authors
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by