Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Interpreting the von Neumann entropy of graph Laplacians, and coentropic graphs
  • Publication Type:
    Journal article
  • Authors:
    Beaudrap ND, Giovannetti V, Severini S, Wilson R
  • Keywords:
    math.CO, math.CO
  • Notes:
    7 pages, 1 figure
For any graph, we define a rank-1 operator on a bipartite tensor product space, with components associated to the set of vertices and edges respectively. We show that the partial traces of the operator are the Laplacian and the edge-Laplacian. This provides an interpretation of the von Neumann entropy of the (normalized)\ Laplacian as the amount of quantum entanglement between two systems corresponding to vertices and edges. In this framework, cospectral graphs correspond exactly to local unitarily equivalent pure states. Finally, we introduce the notion of coentropic graphs, that is, graphs with equal von Neumann entropy. The smallest coentropic (but not cospectral) graphs that we are able to construct have 8 vertices. The number of equivalence classes of coentropic graphs with n vertices and m edges is a lower bound to the number of (pure) bipartite entanglement classes with subsystems of corresponding dimension.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by