UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Randomly Connected Networks Have Short Temporal Memory
  • Publication Type:
    Journal article
  • Authors:
    Wallace E, Maei HR, Latham PE
  • Publisher:
    MIT Press - Journals
  • Publication date:
    06/2013
  • Pagination:
    1408, 1439
  • Journal:
    Neural Computation
  • Volume:
    25
  • Issue:
    6
  • Status:
    Published
  • Print ISSN:
    0899-7667
  • Language:
    en
Abstract
The brain is easily able to process and categorize complex time-varying signals. For example, the two sentences, “It is cold in London this time of year” and “It is hot in London this time of year,” have different meanings, even though the words hot and cold appear several seconds before the ends of the two sentences. Any network that can tell these sentences apart must therefore have a long temporal memory. In other words, the current state of the network must depend on events that happened several seconds ago. This is a difficult task, as neurons are dominated by relatively short time constants—tens to hundreds of milliseconds. Nevertheless, it was recently proposed that randomly connected networks could exhibit the long memories necessary for complex temporal processing. This is an attractive idea, both for its simplicity and because little tuning of recurrent synaptic weights is required. However, we show that when connectivity is high, as it is in the mammalian brain, randomly connected networks cannot exhibit temporal memory much longer than the time constants of their constituent neurons.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Gatsby Computational Neurosci Unit
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by