UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Restricted state selection in fluorescent protein Förster resonance energy transfer.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Masters TA, Marsh RJ, Armoogum DA, Nicolaou N, Larijani B, Bain AJ
  • Publication date:
    29/05/2013
  • Pagination:
    7883, 7890
  • Journal:
    J Am Chem Soc
  • Volume:
    135
  • Issue:
    21
  • Status:
    Published
  • Country:
    United States
  • Language:
    eng
  • Keywords:
    Fluorescence, Fluorescence Resonance Energy Transfer, Protein-Serine-Threonine Kinases, Pyruvate Dehydrogenase Acetyl-Transferring Kinase
Abstract
The measurement of donor lifetime modification by Förster resonance energy transfer (FRET) is a widely used tool for detecting protein-protein interactions and protein conformation change. Such measurements can be compromised by the presence of a significant noninteracting fraction of molecules. Combining time-resolved intensity and anisotropy measurements gives access to both molecular distance and orientation. Fluorescent proteins frequently used to detect energy transfer in biological systems often exhibit decay characteristics indicative of more than one excited state. However, little attention has thus far been given to the specific modes of energy transfer, in particular, which states are predominantly coupled. Here, we use a previously characterized dimerization system to study energy transfer between EGFP and mCherry. Optically excited EGFP and mCherry both exhibit biexponential decays, and FRET should therefore involve dipole-dipole transfer between these four states. Analysis of the sensitized fluorescence anisotropy and intensity decays indicates that FRET transfer is predominantly from the shorter lived EGFP emitting state (2.43 ns) to the longer lived (ca. 2.77 ns) minority component (ca. 16%) of the optically excited mCherry emission. This high degree of state selection between these two widely used FRET pairs highlights the fundamental differences that can arise between direct optical excitation of an isotropic molecular population and dipole-dipole coupling in a far from isotropic interaction geometry and has consequences regarding the accurate interpretation of fluorescent protein FRET data.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Physics & Astronomy
Author
Dept of Physics & Astronomy
Author
Dept of Physics & Astronomy
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by