UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data shown on the profile page to:

http://www.ucl.ac.uk/finance/secure/research/post_award
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Compositional instability of Earth's solid inner core
Abstract
All models that invoke convection to explain the observed seismic variations in Earth's inner core require unstable inner core stratification. Previous work has assumed that chemical effects are stabilizing and focused on thermal convection, but recent calculations indicate that the thermal conductivity at core temperatures and pressures is so large that the inner core must cool entirely by conduction. We examine partitioning of oxygen, sulfur, and silicon in binary iron alloys and show that inner core growth results in a variable light element concentration with time: oxygen concentration decreases, sulfur concentration decreases initially and increases later, and silicon produces a negligible effect to within the model errors. The result is a net destabilizing concentration gradient. Convective stability is measured by a Rayleigh number, which exceeds the critical value for reasonable estimates of the viscosity and diffusivity. Our results suggest that inner core convection models, including the recently proposed translational mode, can be viable candidates for explaining seismic results if the driving force is compositional. Key Points Partitioning of O and S between inner and outer cores is time dependent Inner core is unstable to compositional convection, contrary to previous studies Thermal effects are stabilising, making composition the only driving force. ©2013 American Geophysical Union. All Rights Reserved.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Authors
Dept of Earth Sciences
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by