UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Multi-sample comparison of detrital age distributions
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Vermeesch P
  • Publication date:
    01/03/2013
  • Pagination:
    140, 146
  • Journal:
    Chemical Geology
  • Volume:
    341
  • Status:
    Published
  • Print ISSN:
    0009-2541
Abstract
The petrography and geochronology of detrital minerals form rich archives of information pertaining to the provenance of siliclastic sediments. The composition and age spectra of multi-sample datasets can be used to trace the flow of sediments through modern and ancient sediment routing systems. Such studies often involve dozens of samples comprising thousands of measurements. Objective interpretation of such large datasets can be challenging and greatly benefits from dimension-reducing exploratory data analysis tools. Principal components analysis (PCA) is a proven method that has been widely used in the context of compositional data analysis and traditional heavy mineral studies. Unfortunately, PCA cannot be readily applied to geochronological data, which are rapidly overtaking petrographic techniques as the method of choice for large scale provenance studies. This paper proposes another standard statistical technique called multidimensional scaling (MDS) as an appropriate tool to fill this void. MDS is a robust and flexible superset of PCA which makes fewer assumptions about the data. Given a table of pairwise 'dissimilarities' between samples, MDS produces a 'map' of points on which 'similar' samples cluster closely together, and 'dissimilar' samples plot far apart. It is shown that the statistical effect size of the Kolmogorov-Smirnov test is a viable dissimilarity measure. This is not the case for the p-values of this and other tests. To aid in the adoption of the method by the geochronological community, this paper includes some simple code using the statistical programming language R. More extensive software tools are provided on http://mudisc.london-geochron.com. © 2013 Elsevier B.V.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Earth Sciences
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by