Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
An Improved Diļ¬€erential Attack on Full GOST
  • Publication Type:
    Internet publication
  • Authors:
    Courtois N
  • Publisher:
  • Publication date:
  • Language:
  • Keywords:
    Block ciphers, GOST, differential cryptanalysis, sets of differentials, aggregated differentials, iterative differentials
GOST 28147-89 is a well-known block cipher and the official encryption standard of the Russian Federation. A 256-bit block cipher considered as an alternative for AES-256 and triple DES, having an amazingly low implementation cost and is becoming increasingly popular. Until 2010 researchers unanimously agreed that: "despite considerable cryptanalytic efforts spent in the past 20 years, GOST is still not broken", and in 2010 it was submitted to ISO 18033 to become a worldwide industrial encryption standard. In 2011 it was suddenly discovered that GOST can be broken and is insecure on more than one account. There is a substantial variety of recent attacks on GOST. We have reflection attacks, attacks with double reflection, self-similarity guess then determine attacks which do not use any reflections and advanced differential attacks. The final key recovery step in various attacks is in many cases a software algebraic attack, frequently also or combined with a Meet-In-The-Middle attack and in differential attacks key bits are guessed and confirmed by the differential properties. In this paper we consider some recent differential attacks on GOST and show how to further improve them. We present one new single-key attacks against full 32-round 256-bit GOST with time complexity of 2^179 which is substantially faster than any previous single key attack on GOST.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by