UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
FFPred 2.0: improved homology-independent prediction of gene ontology terms for eukaryotic protein sequences.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Minneci F, Piovesan D, Cozzetto D, Jones DT
  • Publication date:
    2013
  • Pagination:
    e63754, ?
  • Journal:
    PLoS One
  • Volume:
    8
  • Issue:
    5
  • Status:
    Published online
  • Country:
    United States
  • PII:
    PONE-D-13-10452
  • Language:
    eng
  • Keywords:
    Amino Acid Sequence, Biological Phenomena, Computational Biology, Gene Ontology, Genome, Human, Humans, Molecular Sequence Annotation, Proteins, Proteome, Sequence Homology, Amino Acid, Software
Abstract
To understand fully cell behaviour, biologists are making progress towards cataloguing the functional elements in the human genome and characterising their roles across a variety of tissues and conditions. Yet, functional information - either experimentally validated or computationally inferred by similarity - remains completely missing for approximately 30% of human proteins. FFPred was initially developed to bridge this gap by targeting sequences with distant or no homologues of known function and by exploiting clear patterns of intrinsic disorder associated with particular molecular activities and biological processes. Here, we present an updated and improved version, which builds on larger datasets of protein sequences and annotations, and uses updated component feature predictors as well as revised training procedures. FFPred 2.0 includes support vector regression models for the prediction of 442 Gene Ontology (GO) terms, which largely expand the coverage of the ontology and of the biological process category in particular. The GO term list mainly revolves around macromolecular interactions and their role in regulatory, signalling, developmental and metabolic processes. Benchmarking experiments on newly annotated proteins show that FFPred 2.0 provides more accurate functional assignments than its predecessor and the ProtFun server do; also, its assignments can complement information obtained using BLAST-based transfer of annotations, improving especially prediction in the biological process category. Furthermore, FFPred 2.0 can be used to annotate proteins belonging to several eukaryotic organisms with a limited decrease in prediction quality. We illustrate all these points through the use of both precision-recall plots and of the COGIC scores, which we recently proposed as an alternative numerical evaluation measure of function prediction accuracy.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Computer Science
Author
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by