UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
CT colonography: Inverse-consistent symmetric registration of prone and supine inner colon surfaces
  • Publication Type:
    Conference
  • Authors:
    Roth HR, McClelland JR, Modat M, Hampshire TE, Boone DJ, Helbren E, Plumb A, Hu M, Ourselin S, Halligan S, Hawkes DJ
  • Publication date:
    03/06/2013
  • Published proceedings:
    Progress in Biomedical Optics and Imaging - Proceedings of SPIE
  • Volume:
    8669
  • ISBN-13:
    9780819494436
  • Status:
    Published
  • Print ISSN:
    1605-7422
Abstract
CT colonography interpretation is difficult and time-consuming because fecal residue or fluid can mimic or obscure polyps, leading to diagnostic errors. To compensate for this, it is normal practice to obtain CT data with the patient in prone and supine positions. Repositioning redistributes fecal residue and colonic gas; fecal residue tends to move, while fixed mural pathology does not. The cornerstone of competent interpretation is the matching of corresponding endoluminal locations between prone and supine acquisitions. Robust and accurate automated registration between acquisitions should lead to faster and more accurate detection of colorectal cancer and polyps. Any directional bias when registering the colonic surfaces could lead to incorrect anatomical correspondence resulting in reader error. We aim to reduce directional bias and so increase robustness by adapting a cylindrical registration algorithm to penalize inverse-consistency error, using a symmetric optimization. Using 17 validation cases, the mean inverse-consistency error was reduced significantly by 86%, from 3.3 mm to 0.45 mm. Furthermore, we show improved alignment of the prone and supine colonic surfaces, evidenced by a reduction in the mean-of-squared-differences by 43% overall. Mean registration error, measured at a sparse set of manually selected reference points, remained at the same level as the non-symmetric method (no significant differences). Our results suggest that the inverse-consistent symmetric algorithm performs more robustly than non-symmetric implementation of B-spline registration. Keywords: virtual colonoscopy, CT colonography, prone-to-supine registration, non-rigid image registration, inverse-consistent registration, conformal mapping, computer-aided diagnosis and interventions. © 2013 SPIE.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Med Phys & Biomedical Eng
Author
Dept of Med Phys & Biomedical Eng
Author
Experimental & Translational Medicine
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by