Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Water scaffolding in collagen: Implications on protein dynamics as revealed by solid-state NMR.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Aliev AE, Courtier-Murias D
  • Publication date:
  • Pagination:
    246, 256
  • Journal:
  • Volume:
  • Issue:
  • Status:
  • Country:
    United States
  • Language:
  • Keywords:
    collagen, dynamics, protein, solid-state NMR, structure, water, Collagen, Hydrogen Bonding, Magnetic Resonance Imaging, Magnetic Resonance Spectroscopy, Protein Conformation, Water
Solid-state NMR studies of collagen samples of various origins confirm that the amplitude of collagen backbone and sidechain motions increases significantly on increasing the water content. This conclusion is supported by the changes observed in three different NMR observables: (i) the linewidth dependence on the 1H decoupling frequency; (ii) 13C CSA changes for the peptide carbonyl groups, and (iii) dephasing rates of 1H-13C dipolar couplings. In particular, a nearly threefold increase in motional amplitudes of the backbone librations about C-Cα or N-Cα bonds was found on increasing the added water content up to 47 wt%D2 O. On the basis of the frequencies of NMR observables involved, the timescale of the protein motions dependent on the added water content is estimated to be of the order of microseconds. This estimate agrees with that from wideline T2(1)H NMR measurements. Also, our wideline 1H NMR measurements revealed that the timescale of the microsecond motions in proteins reduces significantly on increasing the added water content, i.e., an ∼15-fold increase in protein motional frequencies is observed on increasing the added water content to 45 wt% D2 O. The observed changes in collagen dynamics is attributed to the increase in water translational diffusion on increasing the amount of added water, which leads to more frequent "bound water/free water" exchange on the protein surface, accompanied by the breakage and formation of new hydrogen bonds with polar functionalities of protein.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Chemistry
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by