Please report any queries concerning the funding data grouped in the
sections named
"Externally Awarded"
or
"Internally Disbursed"
(shown on the profile page) to your Research Finance Administrator.
Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php
by entering your department
Please report any queries concerning the student data shown on the
profile page to:
Email: portico-services@ucl.ac.uk
Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Email: portico-services@ucl.ac.uk
Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
A near-field sea level record of east antarctic ice sheet instability from 32 to 27 Myr
-
Publication Type:Journal article
-
Publication Sub Type:Article
-
Authors:Gallagher SJ, Villa G, Drysdale RN, Wade BS, Scher H, Li Q, Wallace MW, Holdgate GR
-
Publication date:01/03/2013
-
Pagination:1, 13
-
Journal:Paleoceanography
-
Volume:28
-
Issue:1
-
Status:Published
-
Print ISSN:0883-8305
-
Full Text URL:
Abstract
Fossil, facies, and isotope analyses of an early high-paleolatitude (55°S) section suggests a highly unstable East Antarctic Ice Sheet from 32 to 27 Myr. The waxing and waning of this ice sheet from 140% to 40% of its present volume caused sea level changes of +25 m (ranging from -30 to +50 m) related to periodic glacial (100,000 to 200,000 years) and shorter interglacial events. The near-field Gippsland sea level (GSL) curve shares many similarities to the far-field New Jersey sea level (NJSL) estimates. However, there are possible resolution errors due to biochronology, taphonomy, and paleodepth estimates and the relative lack of lowstand deposits (in NJSL) that prevent detailed correlations with GSL. Nevertheless, the lateral variations in sea level between the GSL section and NJSL record that suggest ocean siphoning and antisiphoning may have propagated synchronous yet variable sea levels. © 2012 American Geophysical Union. All Rights Reserved.
› More
search options
UCL Researchers