UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Minkowski tensors and local structure metrics: Amorphous and crystalline sphere packings
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Conference Proceeding
  • Authors:
    Schröder-Turk GE, Schielein R, Kapfer SC, Schaller FM, Delaney GW, Senden T, Saadatfar M, Aste T, Mecke K
  • Publication date:
    01/08/2013
  • Pagination:
    349, 352
  • Journal:
    AIP Conference Proceedings
  • Volume:
    1542
  • Status:
    Published
  • Print ISSN:
    0094-243X
Abstract
Robust and sensitive tools to characterise local structure are essential for investigations of granular or particulate matter. Often local structure metrics derived from the bond network are used for this purpose, in particular Steinhardt's bond-orientational order parameters q l . Here we discuss an alternative method, based on the robust characterisation of the shape of the particles' Voronoi cells, by Minkowski tensors and derived anisotropy measures. We have successfully applied these metrics to quantify structural changes and the onset of crystallisation in random sphere packs. Here we specifically discuss the expectation values of these metrics for simple crystalline unimodal packings of spheres, consisting of single spheres on the points of a Bravais lattice. These data provide an important reference for the discussion of anisotropy values of disordered structures that are typically of relevance in granular systems. This analysis demonstrates that, at least for sufficiently high packing fractions above > 0.61, crystalline sphere packs exist whose Voronoi cells are more anisotropic with respect to a volumetric moment tensor than the average value of Voronoi cell anisotropy in random sphere packs. © 2013 AIP Publishing LLC.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by