Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
The solution structure of heparan sulfate differs from that of heparin: implications for function.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Khan S, Fung KW, Rodriguez E, Patel R, Gor J, Mulloy B, Perkins SJ
  • Publication date:
  • Pagination:
    27737, 27751
  • Journal:
    J Biol Chem
  • Volume:
  • Issue:
  • Status:
  • Country:
    United States
  • PII:
  • Language:
  • Keywords:
    Analytical Ultracentrifugation, Heparan Sulfate, Heparin, Heparin-binding Protein, Molecular Modeling, X-ray Scattering, Crystallization, Glycosides, Heparin, Heparitin Sulfate, Ligands, Models, Molecular, Scattering, Radiation, Synchrotrons, Ultracentrifugation, X-Rays
The highly sulfated polysaccharides heparin and heparan sulfate (HS) play key roles in the regulation of physiological and pathophysiological processes. Despite its importance, no molecular structures of free HS have been reported up to now. By combining analytical ultracentrifugation, small angle x-ray scattering, and constrained scattering modeling recently used for heparin, we have analyzed the solution structures for eight purified HS fragments dp6-dp24 corresponding to the predominantly unsulfated GlcA-GlcNAc domains of heparan sulfate. Unlike heparin, the sedimentation coefficient s20,w of HS dp6-dp24 showed a small rotor speed dependence, where similar s20,w values of 0.82-1.26 S (absorbance optics) and 1.05-1.34 S (interference optics) were determined. The corresponding x-ray scattering measurements of HS dp6-dp24 gave radii of gyration RG values from 1.03 to 2.82 nm, cross-sectional radii of gyration RXS values from 0.31 to 0.65 nm, and maximum lengths L from 3.0 to 10.0 nm. These data showed that HS has a longer and more bent structure than heparin. Constrained scattering modeling starting from 5,000 to 12,000 conformationally randomized HS structures gave best fit dp6-dp24 molecular structures that were longer and more bent than their equivalents in heparin. Alternative fits were obtained for HS dp18 and dp24, indicating their higher bending and flexibility. We conclude that HS displays bent conformations that are significantly distinct from that for heparin. The difference is attributed to the different predominant monosaccharide sequence and reduced sulfation of HS, indicating that HS may interact differently with proteins compared with heparin.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Div of Biosciences
Structural & Molecular Biology
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by