UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Quantifying location privacy: The case of sporadic location exposure
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Conference Proceeding
  • Authors:
    Shokri R, Theodorakopoulos G, Danezis G, Hubaux JP, Le Boudec JY
  • Publication date:
    11/08/2011
  • Pagination:
    57, 76
  • Journal:
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
  • Volume:
    6794 LNCS
  • Status:
    Published
  • Print ISSN:
    0302-9743
Abstract
Mobile users expose their location to potentially untrusted entities by using location-based services. Based on the frequency of location exposure in these applications, we divide them into two main types: Continuous and Sporadic. These two location exposure types lead to different threats. For example, in the continuous case, the adversary can track users over time and space, whereas in the sporadic case, his focus is more on localizing users at certain points in time. We propose a systematic way to quantify users' location privacy by modeling both the location-based applications and the location-privacy preserving mechanisms (LPPMs), and by considering a well-defined adversary model. This framework enables us to customize the LPPMs to the employed location-based application, in order to provide higher location privacy for the users. In this paper, we formalize localization attacks for the case of sporadic location exposure, using Bayesian inference for Hidden Markov Processes. We also quantify user location privacy with respect to the adversaries with two different forms of background knowledge: Those who only know the geographical distribution of users over the considered regions, and those who also know how users move between the regions (i.e., their mobility pattern). Using the Location-Privacy Meter tool, we examine the effectiveness of the following techniques in increasing the expected error of the adversary in the localization attack: Location obfuscation and fake location injection mechanisms for anonymous traces. © 2011 Springer-Verlag.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by