Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
The Bayesian traffic analysis of mix networks
  • Publication Type:
  • Authors:
    Troncoso C, Danezis G
  • Publication date:
  • Pagination:
    369, 379
  • Published proceedings:
    Proceedings of the ACM Conference on Computer and Communications Security
  • ISBN-13:
  • Status:
  • Print ISSN:
This work casts the traffic analysis of anonymity systems, and in particular mix networks, in the context of Bayesian inference. A generative probabilistic model of mix network architectures is presented, that incorporates a number of attack techniques in the traffic analysis literature. We use the model to build an Markov Chain Monte Carlo inference engine, that calculates the probabilities of who is talking to whom given an observation of network traces. We provide a thorough evaluation of its correctness and performance, and confirm that mix networks with realistic parameters are secure. This approach enables us to apply established information theoretic anonymity metrics on complex mix networks, and extract information from anonymised traffic traces optimally. Copyright 2009 ACM.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by