Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Adhesion of sodium dodecyl sulfate surfactant monolayers with TiO(2) (rutile and anatase) surfaces.
Surfactants are widely used as templates to control the nucleation and growth of nanostructured metal oxides such as titania. To gain insight into the origin of the surfactant-titania interactions responsible for polymorph and orientation selection, we simulate the self-assembly of an anionic surfactant monolayer on various low-index titania surfaces, for a range of densities. We characterize the binding in each case and compute the adhesion energies, finding anatase (100) and rutile (110) to be the strongest-binding surfaces. The sodium counterions in the monolayer are found to dominate the adhesion. It is also observed that the assembly is directed predominantly by surface-monolayer electrostatic complementarity. Incorporating water displacement into the calculations does not alter the general findings but does cause the adhesion energies to fall within a smaller range.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Physics & Astronomy
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by