UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Fence-sitters protect cooperation in complex networks
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    Zhang Y, Aziz-Alaoui MA, Bertelle C, Zhou S, Wang W
  • Publisher:
    American Physical Society
  • Publication date:
    2013
  • Pagination:
    1, 5
  • Journal:
    Physical Review E: Statistical, Nonlinear, and Soft Matter Physics
  • Volume:
    88
  • Issue:
    032127
  • Status:
    Published
  • Country:
    USA
  • Print ISSN:
    1539-3755
Abstract
Evolutionary game theory is one of the key paradigms behind many scientific disciplines from science to engineering. In complex networks, because of the difficulty of formulating the replicator dynamics, most of the previous studies are confined to a numerical level. In this paper, we introduce a vectorial formulation to derive three classes of individuals’ payoff analytically. The three classes are pure cooperators, pure defectors, and fence-sitters. Here, fence-sitters are the individuals who change their strategies at least once in the strategy evolutionary process. As a general approach, our vectorial formalization can be applied to all the two-strategy games. To clarify the function of the fence-sitters, we define a parameter, payoff memory, as the number of rounds that the individuals’ payoffs are aggregated. We observe that the payoff memory can control the fence-sitters’ effects and the level of cooperation efficiently. Our results indicate that the fence-sitters’ role is nontrivial in the complex topologies, which protects cooperation in an indirect way. Our results may provide a better understanding of the composition of cooperators in a circumstance where the temptation to defect is larger.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by