UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Hilbert Space Embeddings of Predictive State Representations
  • Publication Type:
    Conference
  • Authors:
    Boots B, Gordon G, Gretton A
  • Publication date:
    26/09/2013
  • Keywords:
    cs.LG, cs.LG, stat.ML
  • Notes:
    Appears in Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence (UAI2013)
Abstract
Predictive State Representations (PSRs) are an expressive class of models for controlled stochastic processes. PSRs represent state as a set of predictions of future observable events. Because PSRs are defined entirely in terms of observable data, statistically consistent estimates of PSR parameters can be learned efficiently by manipulating moments of observed training data. Most learning algorithms for PSRs have assumed that actions and observations are finite with low cardinality. In this paper, we generalize PSRs to infinite sets of observations and actions, using the recent concept of Hilbert space embeddings of distributions. The essence is to represent the state as a nonparametric conditional embedding operator in a Reproducing Kernel Hilbert Space (RKHS) and leverage recent work in kernel methods to estimate, predict, and update the representation. We show that these Hilbert space embeddings of PSRs are able to gracefully handle continuous actions and observations, and that our learned models outperform competing system identification algorithms on several prediction benchmarks.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Gatsby Computational Neurosci Unit
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by