UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Circadian rhythms in Mexican blind cavefish Astyanax mexicanus in the lab and in the field.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Beale A, Guibal C, Tamai TK, Klotz L, Cowen S, Peyric E, Reynoso VH, Yamamoto Y, Whitmore D
  • Publication date:
    2013
  • Pagination:
    2769, ?
  • Journal:
    Nat Commun
  • Volume:
    4
  • Status:
    Published
  • Country:
    England
  • PII:
    ncomms3769
  • Language:
    eng
  • Keywords:
    Animals, Behavior, Animal, Caves, Characidae, Circadian Rhythm, DNA Repair, Ecosystem, Gene Expression Regulation, Light, Mexico, Molecular Sequence Data, Period Circadian Proteins
Abstract
Biological clocks have evolved as an adaptation to life on a rhythmic planet, synchronising physiological processes to the environmental light-dark cycle. Here we examine circadian clock function in Mexican blind cavefish Astyanax mexicanus and its surface counterpart. In the lab, adult surface fish show robust circadian rhythms in per1, which are retained in cave populations, but with substantial alterations. These changes may be due to increased levels of light-inducible genes in cavefish, including clock repressor per2. From a molecular standpoint, cavefish appear as if they experience 'constant light' rather than perpetual darkness. Micos River samples show similar per1 oscillations to those in the lab. However, data from Chica Cave shows complete repression of clock function, while expression of several light-responsive genes is raised, including DNA repair genes. We propose that altered expression of light-inducible genes provides a selective advantage to cavefish at the expense of a damped circadian oscillator.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Cell & Developmental Biology
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by