Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Three-dimensional high resolution X-ray imaging and quantification of lithium ion battery mesocarbon microbead anodes
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Tariq F, Yufit V, Kishimoto M, Shearing PR, Menkin S, Golodnitsky D, Gelb J, Peled E, Brandon NP
  • Publication date:
  • Pagination:
    1014, 1020
  • Journal:
    Journal of Power Sources
  • Volume:
  • Status:
  • Print ISSN:
In order to improve lithium ion batteries it is important to characterise real electrode geometries and understand how their 3D structure may affect performance. In this study, high resolution synchrotron nano-CT was used to acquire 3D tomography datasets of mesocarbon microbead (MCMB) based anodes down to a 16 nm voxel size. A specimen labelling methodology was used to produce anodes that enhance the achievable image contrast, and image processing routines were utilised to successfully segment features of interest from a challenging dataset. The 3D MCMB based anode structure was analysed revealing a heterogeneous and bi-modally distributed microstructure. The microstructure was quantified through calculations of surface area, volume, connectivity and tortuosity factors. In doing so, two different methods, random walk and diffusion based, were used to determine tortuosity factors of both MCMB and pore/electrolyte microstructures. The tortuosity factors (2-7) confirmed the heterogeneity of the anode microstructure for this field of view and demonstrated small MCMB particles interspersed between large MCMB particles cause an increase in tortuosity factors. The anode microstructure was highly connected, which was also caused by the presence of small MCMB particles. The complexity in microstructure suggests inhomogeneous local lithium ion distribution would occur within the anode during operation. © 2013 Elsevier B.V. All rights reserved.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Chemical Engineering
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by