UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data shown on the profile page to:

http://www.ucl.ac.uk/finance/secure/research/post_award
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Nitrogen-rich transition metal nitrides
Abstract
The solid state chemistry leading to the synthesis and characterization of metal nitrides with N:M ratios >1 is summarized. Studies of these compounds represent an emerging area of research. Most transition metal nitrides have much lower nitrogen contents, and they often form with non- or sub-stoichiometric compositions. These materials are typically metallic with often superconducting properties, and they provide highly refractory, high hardness materials with many technological applications. The higher metal nitrides should achieve formal oxidation states (OS) attaining those found among corresponding oxides, and they are expected to have useful semiconducting properties. Only a very few examples of such high OS nitrogen-rich compounds are known at present. The main group elements typically form covalently bonded nitride ceramics such as SiN, GeN and SnN, and the early transition metals Zr and Hf produce ZrN and HfN. However, the only main example of a highly nitrided transition metal compound known to date is TaN that has a formal oxidation state +5 and is a semiconductor with visible light absorption leading to applications as a pigment and in photocatalysis. New synthesis routes are being explored to study the possible formation of other N-rich materials that are predicted to exist by ab initio calculations. There is a useful interplay between theoretical predictions and experimental synthesis studies at ambient and high pressure conditions, as we explore and establish the existence and structure-property relations of these new nitride compounds and polymorphs. Here we review the state of current investigations and indicate possible new directions for further work. © 2013 Elsevier B.V.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Authors
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by