UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Fully-connected CRFs with non-parametric pairwise potential
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Conference Proceeding
  • Authors:
    Campbell NDF, Subr K, Kautz J
  • Publication date:
    15/11/2013
  • Pagination:
    1658, 1665
  • Journal:
    Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
  • Status:
    Published
  • Print ISSN:
    1063-6919
Abstract
Conditional Random Fields (CRFs) are used for diverse tasks, ranging from image denoising to object recognition. For images, they are commonly defined as a graph with nodes corresponding to individual pixels and pairwise links that connect nodes to their immediate neighbors. Recent work has shown that fully-connected CRFs, where each node is connected to every other node, can be solved efficiently under the restriction that the pairwise term is a Gaussian kernel over a Euclidean feature space. In this paper, we generalize the pairwise terms to a non-linear dissimilarity measure that is not required to be a distance metric. To this end, we propose a density estimation technique to derive conditional pairwise potentials in a non-parametric manner. We then use an efficient embedding technique to estimate an approximate Euclidean feature space for these potentials, in which the pairwise term can still be expressed as a Gaussian kernel. We demonstrate that the use of non-parametric models for the pairwise interactions, conditioned on the input data, greatly increases expressive power whilst maintaining efficient inference. © 2013 IEEE.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
There are no UCL People associated with this publication
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by