UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Preterm birth affects the developmental synergy between cortical folding and cortical connectivity observed on multimodal MRI.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Melbourne A, Kendall GS, Cardoso MJ, Gunny R, Robertson NJ, Marlow N, Ourselin S
  • Publication date:
    01/04/2014
  • Pagination:
    23, 34
  • Journal:
    Neuroimage
  • Volume:
    89
  • Status:
    Published
  • Country:
    United States
  • PII:
    S1053-8119(13)01197-X
  • Language:
    eng
  • Keywords:
    Connectivity, Neonate, Surface shape, Tractography, White matter, Cerebral Cortex, Diffusion Magnetic Resonance Imaging, Female, Humans, Infant, Magnetic Resonance Imaging, Male, Multimodal Imaging, Nerve Fibers, Myelinated, Nerve Net, Pregnancy, Premature Birth
Abstract
The survival rates of infants born prematurely have improved as a result of advances in neonatal care, although there remains an increased risk of subsequent disability. Accurate measurement of the shape and appearance of the very preterm brain at term-equivalent age may guide the development of predictive biomarkers of neurological outcome. We demonstrate in 92 preterm infants (born at an average gestational age of 27.0±2.7weeks) scanned at term equivalent age (scanned at 40.4±1.74weeks) that the cortical sulcation ratio varies spatially over the cortical surface at term equivalent age and correlates significantly with gestational age at birth (r=0.49,p<0.0001). In the underlying white matter, fractional anisotropy of local white matter regions correlated significantly with gestational age at birth at term equivalent age (for the genu of the corpus callosum r=0.26,p=0.02 and for the splenium r=0.52,p<0.001) and in addition the fractional anisotropy in these local regions varies according to location. Finally, we demonstrate that connectivity measurements from tractography correlate significantly and specifically with the sulcation ratio of the overlying cortical surface at term equivalent age in a subgroup of 20 infants (r={0.67,0.61,0.86}, p={0.004,0.01,0.00002}) for tract systems emanating from the left and right corticospinal tracts and the corpus callosum respectively). Combined, these results suggest a close relationship between the cortical surface phenotype and underlying white matter structure assessed by diffusion weighted MRI. The spatial surface pattern may allow inference on the connectivity and developmental trajectory of the underlying white matter complementary to diffusion imaging and this result may guide the development of biomarkers of functional outcome.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers Show More
Author
Dept of Med Phys & Biomedical Eng
Author
Neonatology
Author
Dept of Med Phys & Biomedical Eng
Author
Dept of Med Phys & Biomedical Eng
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by