Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
A framework for simulating large-scale complex urban traffic dynamics through hybrid agent-based modelling
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Manley E, Cheng T, Penn A, Emmonds A
  • Publication date:
  • Pagination:
    27, 36
  • Journal:
    Computers, Environment and Urban Systems
  • Volume:
  • Status:
  • Print ISSN:
Urban road traffic dynamics are the product of the behaviours and interactions of thousands, often millions of individuals. Traditionally, models of these phenomena have incorporated simplistic representations of individual behaviour, ensuring the maximisation of simulation scale under given computational constraints. Yet, by simplifying representations of behaviour, the overall predictive capability of the model inevitably reduces. In this work a hybrid agent-based modelling framework is introduced that aims to balance the demands of behavioural realism and computational capacity, integrating a descriptive representation of driver behaviour with a simplified, collective model of traffic flow. The hybridisation of these approaches within an agent-based modelling framework yields a representation of urban traffic flow that is driven by individual behaviour, yet, in reducing the computational intensity of simulated physical interaction, enables the scalable expansion to large numbers of agents. A real-world proof-of-concept case study is presented, demonstrating the application of this approach, and showing the gains in computational efficiency made in utilising this approach against traditional agent-based approaches. The paper concludes in addressing how this model might be extended, and exploring the role hybrid agent-based modelling approaches may hold in the simulation of other complex urban phenomena. © 2013 Elsevier Ltd.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Civil, Environ &Geomatic Eng
The Bartlett School of Architecture
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by