Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
A Dynamic Spatial Weight Matrix and Localized Space–Time Autoregressive Integrated Moving Average for Network Modeling
Various statistical model specifications for describing spatiotemporal processes have been proposed over the years, including the space–time autoregressive integrated moving average (STARIMA) and its various extensions. These model specifications assume that the correlation in data can be adequately described by parameters that are globally fixed spatially and/or temporally. They are inadequate for cases in which the correlations among data are dynamic and heterogeneous, such as network data. The aim of this article is to describe autocorrelation in network data with a dynamic spatial weight matrix and a localized STARIMA model that captures the autocorrelation locally (heterogeneity) and dynamically (nonstationarity). The specification is tested with traffic data collected for central London. The result shows that the performance of estimation and prediction is improved compared with standard STARIMA models that are widely used for space–time modeling.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Civil, Environ &Geomatic Eng
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by