UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
A multi-scale approach for spatial-temporal outlier detection
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    Cheng T, Li Z
  • Publisher:
    Wiley-Blackwell
  • Publication date:
    2006
  • Pagination:
    253, 263
  • Journal:
    Transactions in GIS
  • Volume:
    10
  • Issue:
    2
  • Status:
    Published
  • Print ISSN:
    1361-1682
Abstract
A spatial outlier is a spatially referenced object whose thematic attribute values are significantly different from those of other spatially referenced objects in its spatial neighborhood. It represents an object that is significantly different from its neighbourhoods even though it may not be significantly different from the entire population. Here we extend this concept to the spatio-temporal domain and define a spatial-temporal outlier (ST-outlier) to be a spatial-temporal object whose thematic attribute values are significantly different from those of other spatially and temporally referenced objects in its spatial or/and temporal neighbourhoods. Identification of ST-outliers can lead to the discovery of unexpected, interesting, and implicit knowledge, such as local instability or deformation. Many methods have been recently proposed to detect spatial outliers, but how to detect the temporal outliers or spatial-temporal outliers has been seldom discussed. In this paper we propose a multiscale approach to detect ST-outliers by evaluating the change between consecutive spatial and temporal scales. A four-step procedure consisting of classification, aggregation, comparison and verification is put forward to address the semantic and dynamic properties of geographic phenomena for ST-outlier detection. The effectiveness of the approach is illustrated by a practical coastal geomorphic study.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Civil, Environ &Geomatic Eng
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by