Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to
your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:
Email: portico-services@ucl.ac.uk
Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Email: portico-services@ucl.ac.uk
Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
A Kernel Independence Test for Random Processes
-
Publication Type:Conference
-
Authors:Chwialkowski K, Gretton A
-
Publication date:18/02/2014
-
Keywords:stat.ML, stat.ML, 62G10
-
Author URL:
-
Notes:In Proceedings of The 31st International Conference on Machine Learning
Abstract
A new non parametric approach to the problem of testing the independence of
two random process is developed. The test statistic is the Hilbert Schmidt
Independence Criterion (HSIC), which was used previously in testing
independence for i.i.d pairs of variables. The asymptotic behaviour of HSIC is
established when computed from samples drawn from random processes. It is shown
that earlier bootstrap procedures which worked in the i.i.d. case will fail for
random processes, and an alternative consistent estimate of the p-values is
proposed. Tests on artificial data and real-world Forex data indicate that the
new test procedure discovers dependence which is missed by linear approaches,
while the earlier bootstrap procedure returns an elevated number of false
positives. The code is available online:
https://github.com/kacperChwialkowski/HSIC .
› More search options
UCL Researchers