Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
High perceptual load leads to both reduced gain and broader orientation tuning.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Stolte M, Bahrami B, Lavie N
  • Publication date:
  • Pagination:
    9, ?
  • Journal:
    J Vis
  • Volume:
  • Issue:
  • Status:
    Published online
  • Country:
    United States
  • PII:
  • Language:
  • Keywords:
    attention, gain, orientation, perceptual load, tuning, Adult, Attention, Cues, Female, Humans, Male, Orientation, Psychophysics, Visual Cortex, Visual Perception, Young Adult
Due to its limited capacity, visual perception depends on the allocation of attention. The resultant phenomena of inattentional blindness, accompanied by reduced sensory visual cortex response to unattended stimuli in conditions of high perceptual load in the attended task, are now well established (Lavie, 2005; Lavie, 2010, for reviews). However, the underlying mechanisms for these effects remain to be elucidated. Specifically, is reduced perceptual processing under high perceptual load a result of reduced sensory signal gain, broader tuning, or both? We examined this question with psychophysical measures of orientation tuning under different levels of perceptual load in the task performed. Our results show that increased perceptual load leads to both reduced sensory signal and broadening of tuning. These results clarify the effects of attention on elementary visual perception and suggest that high perceptual load is critical for attentional effects on sensory tuning.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Institute of Cognitive Neuroscience
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by